I contest your assertion that the horizon would be "sharp" in either model. In fact, you already submitted your own photographs of how blurry a sphere's "horizon" really is.
Sigh...
Tbh, when I posted the pictures I did notice they weren't
that well focussed. I think my stupid phone focused on the foreground.
I just hoped no-one would notice, I should have known better...
And OK, in real life you're right, there are atmospheric effects and waves which mean it might not be 100% sharp. But the point is according to the RE model you're looking at the
edge of something. And the edges of somethings are generally pretty well defined. I mean, I can see houses out the window. I can see where the rooves ends and beyond that I just see the sky, a roof doesn't just fade gradually into the sky. The sea is, famously, not solid, but a body of liquid on a calm day has a flat enough surface to approximate a solid. I would urge you not to be pedantic about the word "flat" here, I'm talking on a scale of a few miles square where any curvature is negligible.
There's no issue with visibility on a clear day. You can see distant landmarks beyond the horizon. I think you're being a bit pedantic about the word sharp. OK, the horizon might not be 100% sharp but can we agree that there's a pretty obvious difference between these two images:
In the first it's a clear day, you can see a fairly clear, sharp horizon line. In the second it's a foggy day, the visibility is less than the distance to the horizon and the result is there is no sharp horizon line, it's more of a fading out. The latter is what I would imagine one would see on a FE. My reasoning being that on a RE it makes sense that as the sea curves away from you, you're not able to see any more sea, that's why you get the well defined boundary between sea and sky. Some other explanation is required on a FE. I'll repost this diagram:
In the bottom image I've drawn an arbitrary horizon to match the one at the top RE diagram. But what is stopping you seeing further? If you're looking out on, say, the Atlantic, there's thousands more miles of sea, why can you only see the first few miles? This does all presuppose light travels in roughly straight lines of course (and yes, I know refraction is a thing, but that generally allows one to see further than expected). You may invoke EA I guess, but there has to be some explanation. A RE model quite neatly explains why you only see a few miles out to sea before observing a clear horizon line, and it explains why that horizon distance increases with altitude as does the angle dip to the horizon.
Nonetheless, this is the closest you've come to Zeteticism, and that effort ought to be noted. The next step would be not presupposing your outcome - if you follow a similar approach, but without declaring that it must support your favourite shape, you'll start making some real progress.
I'd suggest the method of starting with a hypothesis and devising an experiment to test it has served humanity pretty well. You may disagree, but most of our advances in technology and engineering over the past couple of centuries have been based on us having good working models of reality. The thing I don't understand about Zeteticism is on your Wiki it says:
For example, in questioning the shape of the Earth the zetetic does not make a hypothesis suggesting that the Earth is round or flat and then proceed to testing that hypothesis; he skips that step and devises an experiment that will determine the shape of the Earth, and bases his conclusion on the result of that experiment.
Well ok...but what's the experiment? Let's say we make an observation of the horizon without presupposing the shape of the earth. OK, so what's the conclusion?
It could be that the earth curves away from us, that would explain that observation.
It could be that the sea actually just ends after a few miles.
It could be that the earth is flat but some effect like EA bends the light and that prevents us seeing further.
Any of these interpretations are possible, so how does that experiment help us?
You might fairly reasonably say that's not the right experiement, in which case what is? Any experiment has some underlying assumptions and could be interpreted multiple ways.