And to finish it, if you calculate the curvature of your model to be different from 0, you don't have a flat earth. I hope this is clear
Only in an orthonormal reference frame. Shapes only make sense if you have defined a basis.
No, curvature
does not depend on the choice of coordinates. You could define curvature without ever mentioning coordinates.
We have presented two differently shaped models of the same physics.
They can't be differentiated by any test.
Therefore it's impossible to know the shape of the earth.
You don't have two different shapes. You said it yourself - take the globe, change coordinates, this is what you get. This cannot alter the "shape" you were using,
no matter what coordinates you try to use. If your curvature was non-zero to start with, you can't make it zero (globally) just by a change in coordinate system.
We now have 2 models: one with a flat earth, and one with a globe.
No, still only a globe represented differently than usual
How do we know which one is correct? We device a test and check which model matches the results.
Only problem, both models are identical and always give the same result. There's no way to tell which one is right.
Ergo, we can't measure the true shape of the earth.
They give you the same result because they are the same model. Try to explain the sun/moon going below the horizon for an observer, but for others is still visible high in the sky. Or the fact that constellations keep their shape throughout the night, or the sun keeping the same size all day, or earth being seen as a globe from space. Of course you could chalk it up to "earth is flat, therefore some weird thing happens". But then you're not devising a test to know the shape, you're assuming the shape and then fitting everything else to that. Or, again, you invoke some handwavy-not-supported physics for that.
As for inventing physics: please tell me why light travels straight in a globe world?
My guess is because it matches observations. Same thing with curvy light on a flat planet.
The two models are just one. The explanation remains the same.
Light travels straight provided there are no ways to refract, deflect or interact with light. We see they go straight (as in follow a geodesic) because this is what is observed and measured, no matter what the shape of the earth is. The sun is not the only source of light we have, you know. In this case, theory and experiment agree. However, bendy light on a flat earth is a complete ad hoc hypothesis, as it starts with the earth being flat and then it has to explain sunsets, sunrises, etc.
Only if you're assuming an orthonormal basis. In an orthonormal basis Australia is broken.
The flat world i'm presenting has the equator and the NS-line as axis and coordinates are expressed in degrees (lat/long along these axis, just like a celestial coordinates)
I'm not assuming any basis. If the earth is flat, any map of it is a projection of a disk onto a smaller disk; no distortion happens. That means that if I measured the width of Australia to be 3000km (random number, doesn't matter for the argument) and 3000 pixels in a map, the scale is 1km/pixel
everywhere. Therefore, measuring 3000 pixels anywhere else on the map means that distance is also 3000km.
And just to reiterate,
distance is invariant by a change in coordinate system.
How will you tell?
Both models are indistinguishable. You called them a single model.
There is no measurement or observation of reality that can tell them apart. They both represent is equally well.
They are a single model, and it was not me who said it, it was you. You took a globe earth, changed coordinates and projected it in a disk. Everything else was made to fit that disk based on the observations made on a globe earth.